3.6.27 \(\int (a+b \cos (c+d x)) (A+C \cos ^2(c+d x)) \sec ^3(c+d x) \, dx\) [527]

3.6.27.1 Optimal result
3.6.27.2 Mathematica [A] (verified)
3.6.27.3 Rubi [A] (verified)
3.6.27.4 Maple [A] (verified)
3.6.27.5 Fricas [A] (verification not implemented)
3.6.27.6 Sympy [F]
3.6.27.7 Maxima [A] (verification not implemented)
3.6.27.8 Giac [B] (verification not implemented)
3.6.27.9 Mupad [B] (verification not implemented)

3.6.27.1 Optimal result

Integrand size = 31, antiderivative size = 58 \[ \int (a+b \cos (c+d x)) \left (A+C \cos ^2(c+d x)\right ) \sec ^3(c+d x) \, dx=b C x+\frac {a (A+2 C) \text {arctanh}(\sin (c+d x))}{2 d}+\frac {A b \tan (c+d x)}{d}+\frac {a A \sec (c+d x) \tan (c+d x)}{2 d} \]

output
b*C*x+1/2*a*(A+2*C)*arctanh(sin(d*x+c))/d+A*b*tan(d*x+c)/d+1/2*a*A*sec(d*x 
+c)*tan(d*x+c)/d
 
3.6.27.2 Mathematica [A] (verified)

Time = 0.02 (sec) , antiderivative size = 67, normalized size of antiderivative = 1.16 \[ \int (a+b \cos (c+d x)) \left (A+C \cos ^2(c+d x)\right ) \sec ^3(c+d x) \, dx=b C x+\frac {a A \text {arctanh}(\sin (c+d x))}{2 d}+\frac {a C \text {arctanh}(\sin (c+d x))}{d}+\frac {A b \tan (c+d x)}{d}+\frac {a A \sec (c+d x) \tan (c+d x)}{2 d} \]

input
Integrate[(a + b*Cos[c + d*x])*(A + C*Cos[c + d*x]^2)*Sec[c + d*x]^3,x]
 
output
b*C*x + (a*A*ArcTanh[Sin[c + d*x]])/(2*d) + (a*C*ArcTanh[Sin[c + d*x]])/d 
+ (A*b*Tan[c + d*x])/d + (a*A*Sec[c + d*x]*Tan[c + d*x])/(2*d)
 
3.6.27.3 Rubi [A] (verified)

Time = 0.51 (sec) , antiderivative size = 62, normalized size of antiderivative = 1.07, number of steps used = 8, number of rules used = 8, \(\frac {\text {number of rules}}{\text {integrand size}}\) = 0.258, Rules used = {3042, 3511, 3042, 3500, 3042, 3214, 3042, 4257}

Below are the steps used by Rubi to obtain the solution. The rule number used for the transformation is given above next to the arrow. The rules definitions used are listed below.

\(\displaystyle \int \sec ^3(c+d x) (a+b \cos (c+d x)) \left (A+C \cos ^2(c+d x)\right ) \, dx\)

\(\Big \downarrow \) 3042

\(\displaystyle \int \frac {\left (a+b \sin \left (c+d x+\frac {\pi }{2}\right )\right ) \left (A+C \sin \left (c+d x+\frac {\pi }{2}\right )^2\right )}{\sin \left (c+d x+\frac {\pi }{2}\right )^3}dx\)

\(\Big \downarrow \) 3511

\(\displaystyle \frac {1}{2} \int \left (2 b C \cos ^2(c+d x)+a (A+2 C) \cos (c+d x)+2 A b\right ) \sec ^2(c+d x)dx+\frac {a A \tan (c+d x) \sec (c+d x)}{2 d}\)

\(\Big \downarrow \) 3042

\(\displaystyle \frac {1}{2} \int \frac {2 b C \sin \left (c+d x+\frac {\pi }{2}\right )^2+a (A+2 C) \sin \left (c+d x+\frac {\pi }{2}\right )+2 A b}{\sin \left (c+d x+\frac {\pi }{2}\right )^2}dx+\frac {a A \tan (c+d x) \sec (c+d x)}{2 d}\)

\(\Big \downarrow \) 3500

\(\displaystyle \frac {1}{2} \left (\int (a (A+2 C)+2 b C \cos (c+d x)) \sec (c+d x)dx+\frac {2 A b \tan (c+d x)}{d}\right )+\frac {a A \tan (c+d x) \sec (c+d x)}{2 d}\)

\(\Big \downarrow \) 3042

\(\displaystyle \frac {1}{2} \left (\int \frac {a (A+2 C)+2 b C \sin \left (c+d x+\frac {\pi }{2}\right )}{\sin \left (c+d x+\frac {\pi }{2}\right )}dx+\frac {2 A b \tan (c+d x)}{d}\right )+\frac {a A \tan (c+d x) \sec (c+d x)}{2 d}\)

\(\Big \downarrow \) 3214

\(\displaystyle \frac {1}{2} \left (a (A+2 C) \int \sec (c+d x)dx+\frac {2 A b \tan (c+d x)}{d}+2 b C x\right )+\frac {a A \tan (c+d x) \sec (c+d x)}{2 d}\)

\(\Big \downarrow \) 3042

\(\displaystyle \frac {1}{2} \left (a (A+2 C) \int \csc \left (c+d x+\frac {\pi }{2}\right )dx+\frac {2 A b \tan (c+d x)}{d}+2 b C x\right )+\frac {a A \tan (c+d x) \sec (c+d x)}{2 d}\)

\(\Big \downarrow \) 4257

\(\displaystyle \frac {1}{2} \left (\frac {a (A+2 C) \text {arctanh}(\sin (c+d x))}{d}+\frac {2 A b \tan (c+d x)}{d}+2 b C x\right )+\frac {a A \tan (c+d x) \sec (c+d x)}{2 d}\)

input
Int[(a + b*Cos[c + d*x])*(A + C*Cos[c + d*x]^2)*Sec[c + d*x]^3,x]
 
output
(a*A*Sec[c + d*x]*Tan[c + d*x])/(2*d) + (2*b*C*x + (a*(A + 2*C)*ArcTanh[Si 
n[c + d*x]])/d + (2*A*b*Tan[c + d*x])/d)/2
 

3.6.27.3.1 Defintions of rubi rules used

rule 3042
Int[u_, x_Symbol] :> Int[DeactivateTrig[u, x], x] /; FunctionOfTrigOfLinear 
Q[u, x]
 

rule 3214
Int[((a_.) + (b_.)*sin[(e_.) + (f_.)*(x_)])/((c_.) + (d_.)*sin[(e_.) + (f_. 
)*(x_)]), x_Symbol] :> Simp[b*(x/d), x] - Simp[(b*c - a*d)/d   Int[1/(c + d 
*Sin[e + f*x]), x], x] /; FreeQ[{a, b, c, d, e, f}, x] && NeQ[b*c - a*d, 0]
 

rule 3500
Int[((a_.) + (b_.)*sin[(e_.) + (f_.)*(x_)])^(m_)*((A_.) + (B_.)*sin[(e_.) + 
 (f_.)*(x_)] + (C_.)*sin[(e_.) + (f_.)*(x_)]^2), x_Symbol] :> Simp[(-(A*b^2 
 - a*b*B + a^2*C))*Cos[e + f*x]*((a + b*Sin[e + f*x])^(m + 1)/(b*f*(m + 1)* 
(a^2 - b^2))), x] + Simp[1/(b*(m + 1)*(a^2 - b^2))   Int[(a + b*Sin[e + f*x 
])^(m + 1)*Simp[b*(a*A - b*B + a*C)*(m + 1) - (A*b^2 - a*b*B + a^2*C + b*(A 
*b - a*B + b*C)*(m + 1))*Sin[e + f*x], x], x], x] /; FreeQ[{a, b, e, f, A, 
B, C}, x] && LtQ[m, -1] && NeQ[a^2 - b^2, 0]
 

rule 3511
Int[((a_.) + (b_.)*sin[(e_.) + (f_.)*(x_)])^(m_)*((c_.) + (d_.)*sin[(e_.) + 
 (f_.)*(x_)])*((A_.) + (C_.)*sin[(e_.) + (f_.)*(x_)]^2), x_Symbol] :> Simp[ 
(-(b*c - a*d))*(A*b^2 + a^2*C)*Cos[e + f*x]*((a + b*Sin[e + f*x])^(m + 1)/( 
b^2*f*(m + 1)*(a^2 - b^2))), x] + Simp[1/(b^2*(m + 1)*(a^2 - b^2))   Int[(a 
 + b*Sin[e + f*x])^(m + 1)*Simp[b*(m + 1)*(a*C*(b*c - a*d) + A*b*(a*c - b*d 
)) - ((b*c - a*d)*(A*b^2*(m + 2) + C*(a^2 + b^2*(m + 1))))*Sin[e + f*x] + b 
*C*d*(m + 1)*(a^2 - b^2)*Sin[e + f*x]^2, x], x], x] /; FreeQ[{a, b, c, d, e 
, f, A, C}, x] && NeQ[b*c - a*d, 0] && NeQ[a^2 - b^2, 0] && LtQ[m, -1]
 

rule 4257
Int[csc[(c_.) + (d_.)*(x_)], x_Symbol] :> Simp[-ArcTanh[Cos[c + d*x]]/d, x] 
 /; FreeQ[{c, d}, x]
 
3.6.27.4 Maple [A] (verified)

Time = 5.81 (sec) , antiderivative size = 74, normalized size of antiderivative = 1.28

method result size
derivativedivides \(\frac {a A \left (\frac {\sec \left (d x +c \right ) \tan \left (d x +c \right )}{2}+\frac {\ln \left (\sec \left (d x +c \right )+\tan \left (d x +c \right )\right )}{2}\right )+a C \ln \left (\sec \left (d x +c \right )+\tan \left (d x +c \right )\right )+A b \tan \left (d x +c \right )+C b \left (d x +c \right )}{d}\) \(74\)
default \(\frac {a A \left (\frac {\sec \left (d x +c \right ) \tan \left (d x +c \right )}{2}+\frac {\ln \left (\sec \left (d x +c \right )+\tan \left (d x +c \right )\right )}{2}\right )+a C \ln \left (\sec \left (d x +c \right )+\tan \left (d x +c \right )\right )+A b \tan \left (d x +c \right )+C b \left (d x +c \right )}{d}\) \(74\)
parts \(\frac {a A \left (\frac {\sec \left (d x +c \right ) \tan \left (d x +c \right )}{2}+\frac {\ln \left (\sec \left (d x +c \right )+\tan \left (d x +c \right )\right )}{2}\right )}{d}+\frac {A b \tan \left (d x +c \right )}{d}+\frac {a C \ln \left (\sec \left (d x +c \right )+\tan \left (d x +c \right )\right )}{d}+\frac {C b \left (d x +c \right )}{d}\) \(82\)
parallelrisch \(\frac {-a \left (1+\cos \left (2 d x +2 c \right )\right ) \left (A +2 C \right ) \ln \left (\tan \left (\frac {d x}{2}+\frac {c}{2}\right )-1\right )+a \left (1+\cos \left (2 d x +2 c \right )\right ) \left (A +2 C \right ) \ln \left (\tan \left (\frac {d x}{2}+\frac {c}{2}\right )+1\right )+2 b x d C \cos \left (2 d x +2 c \right )+2 b x d C +2 b \sin \left (2 d x +2 c \right ) A +2 a A \sin \left (d x +c \right )}{2 d \left (1+\cos \left (2 d x +2 c \right )\right )}\) \(125\)
risch \(b C x -\frac {i A \left ({\mathrm e}^{3 i \left (d x +c \right )} a -2 b \,{\mathrm e}^{2 i \left (d x +c \right )}-a \,{\mathrm e}^{i \left (d x +c \right )}-2 b \right )}{d \left ({\mathrm e}^{2 i \left (d x +c \right )}+1\right )^{2}}+\frac {a A \ln \left ({\mathrm e}^{i \left (d x +c \right )}+i\right )}{2 d}+\frac {a \ln \left ({\mathrm e}^{i \left (d x +c \right )}+i\right ) C}{d}-\frac {a A \ln \left ({\mathrm e}^{i \left (d x +c \right )}-i\right )}{2 d}-\frac {a \ln \left ({\mathrm e}^{i \left (d x +c \right )}-i\right ) C}{d}\) \(144\)
norman \(\frac {b C x +\frac {A \left (a -2 b \right ) \left (\tan ^{9}\left (\frac {d x}{2}+\frac {c}{2}\right )\right )}{d}+\frac {A \left (a +2 b \right ) \tan \left (\frac {d x}{2}+\frac {c}{2}\right )}{d}+b C x \left (\tan ^{2}\left (\frac {d x}{2}+\frac {c}{2}\right )\right )+b C x \left (\tan ^{8}\left (\frac {d x}{2}+\frac {c}{2}\right )\right )+b C x \left (\tan ^{10}\left (\frac {d x}{2}+\frac {c}{2}\right )\right )+\frac {4 A \left (a -b \right ) \left (\tan ^{7}\left (\frac {d x}{2}+\frac {c}{2}\right )\right )}{d}+\frac {4 A \left (a +b \right ) \left (\tan ^{3}\left (\frac {d x}{2}+\frac {c}{2}\right )\right )}{d}+\frac {6 a A \left (\tan ^{5}\left (\frac {d x}{2}+\frac {c}{2}\right )\right )}{d}-2 b C x \left (\tan ^{4}\left (\frac {d x}{2}+\frac {c}{2}\right )\right )-2 b C x \left (\tan ^{6}\left (\frac {d x}{2}+\frac {c}{2}\right )\right )}{\left (1+\tan ^{2}\left (\frac {d x}{2}+\frac {c}{2}\right )\right )^{3} \left (\tan ^{2}\left (\frac {d x}{2}+\frac {c}{2}\right )-1\right )^{2}}-\frac {a \left (A +2 C \right ) \ln \left (\tan \left (\frac {d x}{2}+\frac {c}{2}\right )-1\right )}{2 d}+\frac {a \left (A +2 C \right ) \ln \left (\tan \left (\frac {d x}{2}+\frac {c}{2}\right )+1\right )}{2 d}\) \(261\)

input
int((a+cos(d*x+c)*b)*(A+C*cos(d*x+c)^2)*sec(d*x+c)^3,x,method=_RETURNVERBO 
SE)
 
output
1/d*(a*A*(1/2*sec(d*x+c)*tan(d*x+c)+1/2*ln(sec(d*x+c)+tan(d*x+c)))+a*C*ln( 
sec(d*x+c)+tan(d*x+c))+A*b*tan(d*x+c)+C*b*(d*x+c))
 
3.6.27.5 Fricas [A] (verification not implemented)

Time = 0.28 (sec) , antiderivative size = 101, normalized size of antiderivative = 1.74 \[ \int (a+b \cos (c+d x)) \left (A+C \cos ^2(c+d x)\right ) \sec ^3(c+d x) \, dx=\frac {4 \, C b d x \cos \left (d x + c\right )^{2} + {\left (A + 2 \, C\right )} a \cos \left (d x + c\right )^{2} \log \left (\sin \left (d x + c\right ) + 1\right ) - {\left (A + 2 \, C\right )} a \cos \left (d x + c\right )^{2} \log \left (-\sin \left (d x + c\right ) + 1\right ) + 2 \, {\left (2 \, A b \cos \left (d x + c\right ) + A a\right )} \sin \left (d x + c\right )}{4 \, d \cos \left (d x + c\right )^{2}} \]

input
integrate((a+b*cos(d*x+c))*(A+C*cos(d*x+c)^2)*sec(d*x+c)^3,x, algorithm="f 
ricas")
 
output
1/4*(4*C*b*d*x*cos(d*x + c)^2 + (A + 2*C)*a*cos(d*x + c)^2*log(sin(d*x + c 
) + 1) - (A + 2*C)*a*cos(d*x + c)^2*log(-sin(d*x + c) + 1) + 2*(2*A*b*cos( 
d*x + c) + A*a)*sin(d*x + c))/(d*cos(d*x + c)^2)
 
3.6.27.6 Sympy [F]

\[ \int (a+b \cos (c+d x)) \left (A+C \cos ^2(c+d x)\right ) \sec ^3(c+d x) \, dx=\int \left (A + C \cos ^{2}{\left (c + d x \right )}\right ) \left (a + b \cos {\left (c + d x \right )}\right ) \sec ^{3}{\left (c + d x \right )}\, dx \]

input
integrate((a+b*cos(d*x+c))*(A+C*cos(d*x+c)**2)*sec(d*x+c)**3,x)
 
output
Integral((A + C*cos(c + d*x)**2)*(a + b*cos(c + d*x))*sec(c + d*x)**3, x)
 
3.6.27.7 Maxima [A] (verification not implemented)

Time = 0.21 (sec) , antiderivative size = 95, normalized size of antiderivative = 1.64 \[ \int (a+b \cos (c+d x)) \left (A+C \cos ^2(c+d x)\right ) \sec ^3(c+d x) \, dx=\frac {4 \, {\left (d x + c\right )} C b - A a {\left (\frac {2 \, \sin \left (d x + c\right )}{\sin \left (d x + c\right )^{2} - 1} - \log \left (\sin \left (d x + c\right ) + 1\right ) + \log \left (\sin \left (d x + c\right ) - 1\right )\right )} + 2 \, C a {\left (\log \left (\sin \left (d x + c\right ) + 1\right ) - \log \left (\sin \left (d x + c\right ) - 1\right )\right )} + 4 \, A b \tan \left (d x + c\right )}{4 \, d} \]

input
integrate((a+b*cos(d*x+c))*(A+C*cos(d*x+c)^2)*sec(d*x+c)^3,x, algorithm="m 
axima")
 
output
1/4*(4*(d*x + c)*C*b - A*a*(2*sin(d*x + c)/(sin(d*x + c)^2 - 1) - log(sin( 
d*x + c) + 1) + log(sin(d*x + c) - 1)) + 2*C*a*(log(sin(d*x + c) + 1) - lo 
g(sin(d*x + c) - 1)) + 4*A*b*tan(d*x + c))/d
 
3.6.27.8 Giac [B] (verification not implemented)

Leaf count of result is larger than twice the leaf count of optimal. 132 vs. \(2 (54) = 108\).

Time = 0.32 (sec) , antiderivative size = 132, normalized size of antiderivative = 2.28 \[ \int (a+b \cos (c+d x)) \left (A+C \cos ^2(c+d x)\right ) \sec ^3(c+d x) \, dx=\frac {2 \, {\left (d x + c\right )} C b + {\left (A a + 2 \, C a\right )} \log \left ({\left | \tan \left (\frac {1}{2} \, d x + \frac {1}{2} \, c\right ) + 1 \right |}\right ) - {\left (A a + 2 \, C a\right )} \log \left ({\left | \tan \left (\frac {1}{2} \, d x + \frac {1}{2} \, c\right ) - 1 \right |}\right ) + \frac {2 \, {\left (A a \tan \left (\frac {1}{2} \, d x + \frac {1}{2} \, c\right )^{3} - 2 \, A b \tan \left (\frac {1}{2} \, d x + \frac {1}{2} \, c\right )^{3} + A a \tan \left (\frac {1}{2} \, d x + \frac {1}{2} \, c\right ) + 2 \, A b \tan \left (\frac {1}{2} \, d x + \frac {1}{2} \, c\right )\right )}}{{\left (\tan \left (\frac {1}{2} \, d x + \frac {1}{2} \, c\right )^{2} - 1\right )}^{2}}}{2 \, d} \]

input
integrate((a+b*cos(d*x+c))*(A+C*cos(d*x+c)^2)*sec(d*x+c)^3,x, algorithm="g 
iac")
 
output
1/2*(2*(d*x + c)*C*b + (A*a + 2*C*a)*log(abs(tan(1/2*d*x + 1/2*c) + 1)) - 
(A*a + 2*C*a)*log(abs(tan(1/2*d*x + 1/2*c) - 1)) + 2*(A*a*tan(1/2*d*x + 1/ 
2*c)^3 - 2*A*b*tan(1/2*d*x + 1/2*c)^3 + A*a*tan(1/2*d*x + 1/2*c) + 2*A*b*t 
an(1/2*d*x + 1/2*c))/(tan(1/2*d*x + 1/2*c)^2 - 1)^2)/d
 
3.6.27.9 Mupad [B] (verification not implemented)

Time = 1.58 (sec) , antiderivative size = 135, normalized size of antiderivative = 2.33 \[ \int (a+b \cos (c+d x)) \left (A+C \cos ^2(c+d x)\right ) \sec ^3(c+d x) \, dx=\frac {2\,C\,b\,\mathrm {atan}\left (\frac {\sin \left (\frac {c}{2}+\frac {d\,x}{2}\right )}{\cos \left (\frac {c}{2}+\frac {d\,x}{2}\right )}\right )}{d}+\frac {A\,a\,\sin \left (c+d\,x\right )}{2\,d\,{\cos \left (c+d\,x\right )}^2}+\frac {A\,b\,\sin \left (c+d\,x\right )}{d\,\cos \left (c+d\,x\right )}-\frac {A\,a\,\mathrm {atan}\left (\frac {\sin \left (\frac {c}{2}+\frac {d\,x}{2}\right )\,1{}\mathrm {i}}{\cos \left (\frac {c}{2}+\frac {d\,x}{2}\right )}\right )\,1{}\mathrm {i}}{d}-\frac {C\,a\,\mathrm {atan}\left (\frac {\sin \left (\frac {c}{2}+\frac {d\,x}{2}\right )\,1{}\mathrm {i}}{\cos \left (\frac {c}{2}+\frac {d\,x}{2}\right )}\right )\,2{}\mathrm {i}}{d} \]

input
int(((A + C*cos(c + d*x)^2)*(a + b*cos(c + d*x)))/cos(c + d*x)^3,x)
 
output
(2*C*b*atan(sin(c/2 + (d*x)/2)/cos(c/2 + (d*x)/2)))/d - (C*a*atan((sin(c/2 
 + (d*x)/2)*1i)/cos(c/2 + (d*x)/2))*2i)/d - (A*a*atan((sin(c/2 + (d*x)/2)* 
1i)/cos(c/2 + (d*x)/2))*1i)/d + (A*a*sin(c + d*x))/(2*d*cos(c + d*x)^2) + 
(A*b*sin(c + d*x))/(d*cos(c + d*x))